Поиск в словарях
Искать во всех

Физический энциклопедический словарь - колебания кристаллическойрешётки

 

Колебания кристаллическойрешётки

колебания кристаллическойрешётки
один из осн. видов внутр. движений тв. тела, когда составляющие его структурные ч-цы (атомы, ионы, молекулы) колеблются около положений равновесия — узлов кристаллической решётки. Амплитуда колебаний тем больше, чем выше темп-pa, но всегда существенно меньше, чем постоянная решётки. Когда амплитуда достигает нек-рого критич. значения, крист. структура разрушается, начинается процесс плавления. Наоборот, при понижении темп-ры амплитуда уменьшается. Однако полное прекращение колебаний запрещено законами квант. механики; при Т=0К атомы совершают нулевые колебания. Энергия нулевых колебаний мала, поэтому с понижением темп-ры все жидкости затвердевают, за исключением жидкого гелия, к-рый затвердевает при Т=0К только при повыш. давлении. На тепловые К. к. р. (фон) могут налагаться звук. колебания, вызванные распространением в кристалле упругих волн, порождаемых внешним воздействием (удар, периодическая внешняя сила).

Под колебаниями атомов и ионов подразумеваются колебания массивных по сравнению с эл-нами ат. ядер. Это позволяет приписать кристаллу потенц. энергию, зависящую только от координат ядер (адиабатическое приближение).

Силы, к-рые стремятся удержать атомы в положении равновесия, приближённо можно считать пропорциональными их относит. смещениям, как если бы атомы были связаны упругими «пружинками» (рис. 1). Представление кристалла в виде совокупности ч-ц, связанных упругими силами, наз. гармоническим приближением. В такой системе могут распространяться упругие волны разной длины. При

Рис. 1. Представление объёмно-центрированного кубич. кристалла в виде совокупности ч-ц массы m, связанных друг с другом «пружинками» с жёсткостью .


, больших, чем межатомные расстояния (малые частоты колебаний), гармонич. приближение даёт те же результаты, что и модель кристалла как сплошной упругой среды. Для больших частот, когда длина волны сопоставима с межат. расстояниями, начинает сказываться дискр. ат. структура кристалла, при низких темп-pax проявляются квант. эффекты. Это было экспериментально обнаружено по отклонению теплоёмкости от Дюлонга и Пти закона и объяснено в теории Эйнштейна (модель кристалла как совокупности гармонич. осцилляторов, колеблющихся с одинаковой частотой) и более строго в теории Дебая, где был учтён непрерывный спектр частот осцилляторов.

Оказалось, что имеется глубокая аналогия между светом и упругими волнами в кристаллах; для последних также имеет место дискретность энергии. Кванты энергии упругих колебаний были названы фононами. Энергия фонона равна ђ ( — частота колебаний). Звук. волны в кристаллах рассматриваются как распространение квазичастиц фононов, тепловые К. к. р.— как термич. возбуждение фононов.

Можно показать, что в кристалле, состоящем из N элементарных ячеек по v атомов в каждой, существуют 3N-6 типов простейших колебаний, наз. нормальными колебаниями или модами. Их число равно числу степеней свободы у совокупности частиц, составляющих кристалл, за вычетом трёх степеней свободы, отвечающих поступательному, и трёх — вращательному движению кристалла как целого (см. Степеней свободы число). Числом 6 можно пренебречь, т. к. 3vN величина ~1022— 1023 для 1 см3 кристалла. В кристалле одновременно могут существовать все возможные нормальные колебания, причём каждое протекает так, как если бы остальных не было вовсе. Любое движение атомов в кристалле,

295



не нарушающее его микроструктуры, представляется в виде суперпозиции норм. колебаний кристалла (см. Суперпозиции принцип).

Каждое норм. колебание можно представить в виде двух упругих плоских бегущих волн, распространяющихся в противоположных направлениях (н о р м а л ь н ы е в о л н ы).

Рис. 2. Эллиптич. поляризация упругих волн в кристалле; k — волн. вектор.


Плоская бегущая волна, помимо частоты , характеризуется волн. вектором k, а также нек-рым числом , к-рое определяет тип и поляризацию волны, т. е. направление смещения отд. атомов. В общем случае имеет место эллиптич. поляризация, когда каждый атом в данном норм. колебании описывает эллипс около своего положения равновесия (рис. 2). При этом нормаль к плоскости эллипса не совпадает по направлению с k. Эллиптич. орбиты одинаковы для идентичных атомов, занимающих эквивалентные положения в решётке. В тех кристаллах, где каждый узел явл. центром симметрии (см. Симметрия кристаллов), все норм. волны плоско поляризованы: атомы в любом норм. колебании совершают возвратно-поступат. движения около своих положений равновесия.

Упругие волны в кристалле всегда обладают дисперсией (см. Дисперсия волн). В частности, их фазовая скорость, как правило, отличается от групповой скорости, с к-рой по кристаллу переносится энергия колебаний. Т. к. вз-ствие между атомами конечно по величине, то в кристалле существует нек-рая макс. частота колебаний макс (обычно макс~1013 Гц). Частоты норм. колебаний могут не сплошь заполнять интервал от =0 до =макс, в нём могут быть пустые участки (запрещённые зоны). Колебания, частоты к-рых соответствуют запрещённым зонам, и колебания с частотами >макс не могут распространяться в кристалле.

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Ссылка для сайта или блога:
Ссылка для форума (bb-код):